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a b s t r a c t

Schumpeterian growth theory based on creative destruction was originally designed for continuous
time innovation and growth models. However, its recently expanding use in DSGE modelling calls
for an easily useable discrete time recast. We here show how to construct a discrete time version of
creative destruction fully equivalent to its continuous time counterpart.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Following Benigno and Fornaro’s (2018) benchmark contri-
bution on the unemployment and growth consequences of the
zero lower bound constraint of monetary policy in the pres-
ence of nominal frictions and Schumpeterian creative destruction,
more and more authors1 are currently trying to integrate cre-
ative destruction-driven growth with dynamic stochastic general
equilibrium (DSGE) modelling. The source of growth used in
the literature borrows much from the established research and
development (R&D) and growth theory based on Schumpeterian
creative destruction (Aghion and Howitt, 1992; Grossman and
Helpman, 1991, etc.), which has the advantage of being consistent
with the microeconomic evidence that resource reallocation from
less productive obsolete firms to more productive innovative
firms is important for growth. However, the R&D and innova-
tion technology used in this literature is explicitly designed for
continuous time. In particular, creative destruction follows an
endogenous innovation probability per unit time modelled as a
Poisson process. When recast in discrete time, which is necessary
for usual DSGE modelling, the simplifying properties of the Pois-
son process are lost, with potentially devastating complications.
In particular, the discrete time models, by assuming that one
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innovation is possible per period, literally taken imply that if
more firms are trying to innovate, more than one firm may
happen to patent the innovation at the end of the period. With the
free entry of an indefinite number of R&D firms, the distribution
of potential patent holders at the end of the period becomes too
complex. An elegant way out of this problem is to assume that
in each sector and in each period one and only one entrepreneur
is randomly selected with the opportunity to try to innovate. 2

However, while insightfully introducing into creative destruction
the concept of the scarcity of innovations (Scotchmer, 2004), this
sacrifices free entry into R&D, at the heart of the growth driven by
Schumpeterian patent races (Aghion and Howitt, 1992; Grossman
and Helpman, 1991). Alternatively, to maintain Schumpeterian
patent races, Benigno and Fornaro (2018) assume a very small
time unit that approximately behaves like continuous time

In this paper, we will generalize Benigno and Fornaro’s (2018)
assumption and show how a simple to apply discrete time in-
novation process leads to a straightforward translation of the
continuous time modelling into discrete time. This is potentially
useful to microfound the generality of the Schumpeterian DSGE
models. In particular, while we accept the usual discrete time
models’ assumption that only one innovation is found per period,
we will maintain the continuous time implication that only one
firm is the first to find the innovation. This is, in our opinion,
very natural, because a discrete time patent race is a tractable
parody of a more realistic patent race in continuous time. Hence,

2 Aghion et al. (2005) pioneered this approach. Also see Aghion and Howitt
(2009) for several very interesting applications (not in DSGE). See Nuño (2011)
for a real business cycle application.
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given the cardinality of the continuum, the probability of two
firms simultaneously winning the patent race is indeed zero. We
claim that this property should never be lost in the discrete time
simplification of the patent race-driven growth models.

The rest of this paper is organized as follows. Section 2 shows
the need for recasting innovation from continuous time to dis-
crete time. Section 3 shows our solution to this problem. Section 4
concludes.

2. One process fits All?

2.1. Continuous time - a refresh

In the standard quality ladder model of Aghion and Howitt
(1992, 2009), Grossman and Helpman (1991) and Segerstrom
(1998), etc. time is continuous, and there is a continuum of dif-
ferentiated consumption or intermediate goods ω ∈ [0, 1], with
vertical innovation carried out by outsider R&D firms. At any time
t , due to instantaneous price competition and constant returns to
scale, each sector ω ∈ [0, 1] is temporarily monopolized by the
owner of the blueprint on the top quality product j(ω, t) ∈ N ,
until an outsider R&D firm manages to invent the j(ω, t) + 1st
quality as a result of its R&D investment. Let l(ω, h, t) denote the
R&D employment3 of firm h in sector ω at date t , with w(t) the
corresponding real wage. It is usually assumed that the resulting
probability intensity of innovation per unit time by firm h is

I(ω, h, t) =
l(ω, h, t)
X(ω, t)

(1)

where X(ω, t) denotes a potentially time varying difficulty index
of R&D in the sector.4

Since all innovative Poisson processes are assumed to be in-
dependent across firms and sectors, we can write the sectorial
probability, I(ω, t), per unit time of a quality jump by summing
(1) for the number H(ω, t) ∈ N of R&D firms in sector ω active at
time t , that is:

I(ω, t) =

H(ω,t)∑
h=1

I(ω, h, t). (2)

Notice that in Eq. (2) we simply summed the firm probabilities
because the probability of two innovations occurring at the same
time is zero. Hence the individual firm’s probability of appropri-
ating the innovation per unit time remains the same, regardless
of the total flow probability.

Using (1) and (2), a generic R&D firm h’s expected profit max-
imization at time t in an instantaneous patent race for product
quality j(ω, t)+1 of value V (ω, j(ω, t)+1, t+1) can be rewritten
as

max
l≥0

l(ω, h, t)
X(ω, t)

V (ω, j(ω, t) + 1, t + 1) − w(t)l(ω, h, t). (3)

This leads to the R&D free entry (zero profit) condition

V (ω, j(ω, t) + 1, t + 1)
X(ω, t)

= w(t) (4)

as in standard Schumpeterian models (Aghion and Howitt, 1992;
Grossman and Helpman, 1991; Segerstrom, 1998; Howitt, 1999,
etc.).

3 Results would be identical if we assumed that also final or intermediate
goods were used in R&D.
4 For example, Segerstrom (1998), respectively Howitt (1999), use it to

eliminate the strong scale effect with semi-endogenous, respectively endogenous
growth, implications.

2.2. Discrete time

Let us now abandon continuous time and assume that, like the
generality of DSGE models, time is discrete, t = 0, 1, 2, . . .. As in
the literature we make the following:

Assumption 1. Only one innovation can be made and patented
per period.

Remark. This means that there is only one patent race per period.

Consistently with the continuous time industry’s innovation
process in which the single firm contribution I(ω, h, t) from Eq.
((1) ) is part of the total probability of success — now constrained
not to exceed 1. In fact, we will also assume the following:

Assumption 2. The total probability of the new product of quality
j(ω, t) + 1 being invented at time t + 1 is

I(ω, t) = min

{H(ω,t)∑
h=1

I(ω, h, t), 1

}
. (5)

So far nothing new. However, the previous two assumptions
leave the door open to the possibility that more firms will win the
patent race, which would contrast the very concept of realistic
patent races, which do take place in continuous time. Moreover,
literally relying on these two assumptions, as we try to study
the R&D firm’s optimizing behaviour and the industry’s R&D free
entry condition, complications start: for example, if in a duopoly
each firm taken in isolation had probability 1/3 of appropriating
the quality jump, each will be the only one to make the quality
jump only with probability (1−1/3)1/3, that is 2/9. If both firms
innovate, which happens with probability 1/9, the patent has to
be either shared or randomly assigned. With a generic number,
H(ω, t), of firms in the industry it becomes impossible to write
down an R&D free entry condition as simple as Eq. (4).

3. A simple solution

We propose a simple and harmless solution, based on the con-
sideration that between the beginning and the end of a discrete
time runs a continuous time patent race, in which the probability
of simultaneous innovation and patenting is zero. This does not
require that the period is vanishingly small: if the time unit is
quarterly, within three months of R&D there will be a first firm
that finds the idea and patents it, thereby appropriating all the
value of that period’s innovation. Hence we make the following:

Assumption 3. If firm h wins the patent race in period t no other
firm h′

̸= h can also win it.

Remark. Our assumption means that if in reality the patent race
between t and t + 1 occurs in continuous time, the discrete
time approximation shall just observe which firm has been the
winner in the period [t, t+1], rather than allowing the completely
unrealistic assumption of more firms having won that race.

We will also make the following:

Assumption 4. The probability of firm h’s being the inventor of
this new good, conditional on the good being invented, is
I(ω, h, t)
I(ω, t)

. (6)

Remark. Note that the total probability of innovation in the
industry and the chances of a generic firm h succeeding in the
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patent rate will depend on the whole set of probability inputs
{I(ω, h, t)}H(ω,t)

h=1 . However, notice that at the aggregate economy
level all single industry processes can safely be assumed indepen-
dent.

Consequently, the probability of R&D success for firm h in
sector ω is just the probability of the innovation happening,
which depends on the aggregate R&D in sector ω, multiplied by
the probability of appropriating it conditional on the innovation
happening, that is:

I(ω, t)
I(ω, h, t)
I(ω, t)

= I(ω, h, t). (7)

Using (1) and (7), a generic R&D firm h’s expected profit
maximization in a patent race in period t for product quality
j(ω, t) + 1 of value V (ω, j(ω, t) + 1, t + 1) can be rewritten as

max
l≥0

l(ω, h, t)
X(ω, t)

Et [V (ω, j(ω, t) + 1, t + 1)] − w(t)l(ω, h, t) (8)

where Et is the expectation operator conditional on information
up to time t . This leads to the same free entry condition
Et [V (ω, j(ω, t) + 1, t + 1)]

X(ω, t)
= w(t) (9)

as in Eq. (4).

3.1. Robustness

3.1.1. Stepping on toes
Our result can be easily generalized to R&D production func-

tions incorporating the widely adopted Jones andWilliams’ (1998)
‘‘stepping-on-toes’’ negative externalities of industry R&D. In
fact, we could rewrite (1) as

I(ω, h, t) =
l(ω, h, t)
X(ω, t)

(
l(ω, t)
X(ω, t)

)−a

(10)

where

l(ω, t) ≡

∑H(ω,t)
h′=1 l(ω, h′, t)

H(ω, t)
is the average R&D employment in industry ω in period t . The
R&D firm expected profit maximization would become

max
l(ω,h,t)≥0

l(ω, h, t)
X(ω, t)

(
l(ω, t)
X(ω, t)

)−a

Et [V (ω, j(ω, t) + 1, t + 1)]

− w(t)l(ω, h, t) (11)

leading to the modified free entry condition

Et [V (ω, j(ω, t) + 1, t + 1)]
X(ω, t)

(
l(ω, t)
X(ω, t)

)−a

= w(t). (12)

In a symmetric equilibrium l(ω, h, t) = l(ω, t), so that (10)
simplifies to

I(ω, h, t) =

(
l(ω, t)
X(ω, t)

)1−a

= I(ω, t), (13)

which gives equilibrium first order condition
Et [V (ω, j(ω, t) + 1, t + 1)]

X(ω, t)
I(ω, t)

−a
1−a = w(t). (14)

Given the value of the future patent, V (ω, t+1), the R&D difficulty
index, X(ω, t), and the wage rate, w(t), the probability of an
innovation arriving at the end of period t is

I(ω, t) =

(
Et [V (ω, j(ω, t) + 1, t + 1)]

X(ω, t)w(t)

) 1−a
a

. (15)

3.1.2. Multiple innovations per period
The data used in quantitative DSGE models are usually quar-

terly or yearly at most. Instead the creative destruction Schum-
peterian innovations – assumed able to replace a monopoly in
a sector with a new entrant – are breakthrough expected to
happen every few years.5 Hence the DSGE assumption of only
one innovation per period – which may be unrealistic a low
frequencies (as in overlapping generations models) – is fairly
acceptable at business cycle frequencies.

In some important cases, we here conjecture that more in-
novations per period could still be made consistent with our
solutions. One case is the most common in the Schumpeterian
growth models6: a unit elasticity of substitution among product
varieties. This makes firm profits either constant (when innova-
tion is in the final goods) or linear in the sector’s productivity
(with innovation in the intermediate goods) - paired with the
usual assumption of R&D difficulty proportional to the secto-
rial productivity (e.g. Benigno and Fornaro, 2018). In these two
cases, the R&D firm innovation probability becomes invariant
to the number of jumps. Then our solution would still work
with multiple innovative steps per period, after assuming that
expected7 increases in the firm values within the period are not
discounted. Of course, at the macroeconomic level aggregation
across sectors would also work in the same way, due to the law
of large numbers.

Another important case is when firms adopt a commonly
evolving technological frontier, Amax

t , as in the continuous time
models of Aghion and Howitt (1998) and Howitt (1999).8 Viewed
from the single firm or sector, this frontier evolves exogenously:
sector ω productivity, Aωt , will jump to the frontier as soon as
an R&D firm in the sector is successful in its innovation process.
Profits and R&D difficulty are both linearly increasing in Amax

t . In a
discrete time recast, if each innovator is assumed to be targeting
time t + 1 frontier, Amax

t+1 , our previous solution trivially applies.
If instead more innovations within the underlying continuous
time [t, t + 1) period are allowed, the first R&D firm catching
up with the corresponding intermediate value of the frontier
would effectively face a properly scaled-down version of the same
problem we are considering here. Assuming again no discounting
and full diversification within the period, each firm h will expect
to earn profits for a fraction I(ω,h,t)

I(ω,t) of the period, and its under-
lying expected profit maximization would follow unaltered. The
only change from the simplest case would be the expectation
of a profit corresponding to possible intermediate values of the
frontier between Amax

t and Amax
t+1 .

4. Final remarks

We have provided a simple definition of the R&D investment
process in the Schumpeterian innovation process that allows a
direct translation of the usual continuous time R&D equations
into their workable discrete time counterpart. Our solution to
the problem of integrating discrete time DSGE and continuous

5 A decade, according to evidence reported by Nuño (2011, p. 268): “The
average business turnover of US firms n (the rate of creation/destruction of
firms in the economy) in the last two decades has been 10%. As shown in Fig.
1, this value is also consistent with the empirical evidence for average survival
rates in the 1963 and 1976 cohorts of US manufacturing firms.”
6 The large majority, from Grossman and Helpman (1991) on.
7 As usual, first moments only count due to the usual assumption of full

diversification of R&D investments across different firms (between and within
sectors).
8 This case has recently been incorporated in DSGE modelling by Nuño (2011)

and Cozzi et al. (2017). However, in their discrete time reframe, both papers
assume only one innovation per period and that only one firm is exogenously
allowed to innovate per period.
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time, in a nutshell, is to combine the continuous time model’s
implication that only one firm is the first to find an innovation
(because patent races take place in continuous time), with the
discrete time model’s assumption that only one innovation is
found per period. This is potentially useful for a whole class of
DSGE models embedding Schumpeterian growth.
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